Issue 19, 2013

Combined experimental and theoretical investigation of the hemi-squaraine/TiO2 interface for dye sensitized solar cells

Abstract

A simple hemi-squaraine dye (CT1) has been studied as a TiO2 sensitizer for application in dye sensitized solar cells (DSCs) by means of a combined experimental and theoretical investigation. This molecule is a prototype dye presenting an innovative anchoring group: the squaric acid moiety. Ab initio calculations based on Density Functional Theory (DFT) predict that this acid spontaneously deprotonates at the anatase (101) surface forming chemical bonds that are stronger than the ones formed by other linkers (e.g. cathecol and isonicotinic acid). Moreover an analysis of the electronic structure of the hybrid interface reveals the formation of a type II heterostructure ensuring adiabatic electron transfer from the molecule to the oxide. DSCs containing hemi-squaraine dyes were assembled, characterized and their performances compared to state of the art cells. Experimental results (large incident photon-to-electron conversion efficiency and an efficiency of 3.54%) confirmed the theoretical prediction that even a simple hemi-squaraine is an effective sensitizer for TiO2. Our study paves the way to the design of more efficient sensitizers based on a squaric acid linker and specifically engineered to absorb light in a larger part of the visible range.

Graphical abstract: Combined experimental and theoretical investigation of the hemi-squaraine/TiO2 interface for dye sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2013
Accepted
14 Mar 2013
First published
18 Mar 2013

Phys. Chem. Chem. Phys., 2013,15, 7198-7203

Combined experimental and theoretical investigation of the hemi-squaraine/TiO2 interface for dye sensitized solar cells

G. Cicero, G. Musso, A. Lamberti, B. Camino, S. Bianco, D. Pugliese, F. Risplendi, A. Sacco, N. Shahzad, A. M. Ferrari, B. Ballarin, C. Barolo, E. Tresso and G. Caputo, Phys. Chem. Chem. Phys., 2013, 15, 7198 DOI: 10.1039/C3CP50559F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements