Issue 43, 2013

NMR-crystallographic study of two-dimensionally self-assembled cyclohexane-based low-molecular-mass organic compounds

Abstract

Using a combined approach based on scanning electron microscopy, powder X-ray diffraction as well as 1D and 2D multinuclear solid-state NMR spectroscopy, we were able to determine the morphology and the crystal structures for a set of three supramolecular compounds with different hydrogen bonding motifs, namely N,N′-(cyclohexane-trans-1,4-diyl)bis(2,2-dimethylpropanamide) 1, 1,1′-(cyclohexane-trans-1,4-diyl)bis(3-tert-butylurea) 2 and N1,N4-bis(tert-butylcarbamoyl)cyclohexane-trans-1,4-dicarboxamide 3. Based on a complete signal assignment of the 1D solid-state MAS NMR spectra (1H, 13C, 15N) employing 2D HETCOR experiments and a quantitative evaluation of the corresponding resonances, the content of the asymmetric unit was determined to one half of a molecule. Probing the molecular configuration with 1H–1H double-quantum experiments revealed an intramolecular hydrogen bond for compound 3 while 1 and 2 form exclusively intermolecular H-bonds. Ab initio structure solutions applying real space methods with an included close-contact penalty were carried out for all compounds. The following Rietveld refinements led to excellent wRp-values between 2.5% and 4.1%. Compounds 1 and 2 crystallise isostructurally in the monoclinic space group P21/c exhibiting a pseudo-biaxial hydrogen bond motif. 3 crystallises in the triclinic space group P[1 with combining macron] with intermolecular head-to-tail hydrogen bonds connecting the molecules to one-dimensional ribbons. Nevertheless, all compounds grow in a sheet-like morphology with lateral dimensions of several hundred micrometres indicating a fast growth in two dimensions along two of the crystal axes. Since all three molecules possess inversion symmetry cancelling the molecular dipole moment the growth mechanism itself has to be dominantly driven by the formation of hydrogen bond networks.

Graphical abstract: NMR-crystallographic study of two-dimensionally self-assembled cyclohexane-based low-molecular-mass organic compounds

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2013
Accepted
07 Aug 2013
First published
04 Sep 2013

CrystEngComm, 2013,15, 8784-8796

NMR-crystallographic study of two-dimensionally self-assembled cyclohexane-based low-molecular-mass organic compounds

M. Schmidt, C. S. Zehe, R. Siegel, J. U. Heigl, C. Steinlein, H. Schmidt and J. Senker, CrystEngComm, 2013, 15, 8784 DOI: 10.1039/C3CE41158C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements