Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 45, 2013

Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage

Author affiliations

Abstract

Porous Fe2O3 nanocubes composed of fine Fe2O3 nanoparticles have been facilely synthesized by simultaneous oxidative decomposition of Prussian blue (PB) nanocubes at high temperature. When evaluated as an anode material for lithium-ion batteries, the as-obtained porous Fe2O3 nanocubes manifest high specific capacity (∼800 mA h g−1 at 200 mA g−1) and excellent cycling performance.

Graphical abstract: Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage

Supplementary files

Article information


Submitted
03 Jun 2013
Accepted
02 Aug 2013
First published
02 Aug 2013

CrystEngComm, 2013,15, 9332-9335
Article type
Communication

Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage

L. Zhang, H. B. Wu, R. Xu and X. W. (. Lou, CrystEngComm, 2013, 15, 9332 DOI: 10.1039/C3CE40996A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements