Issue 17, 2013

Nanomaterial-based electrochemical detection of explosives: a review of recent developments

Abstract

This article reviews recent advances in electrochemical sensing and detection of explosive substances at nanomaterial-based electrode surfaces. The escalating threat of terrorist activities and growing environmental concerns have generated major demand for innovative, field-deployable tools for detecting explosives in a fast, sensitive, reliable and simple manner. Electrochemical sensors can address these demands as they possess attributes including high sensitivity and selectivity, speed, wide linear range, compatibility with microfabrication, minimal space and power requirements, and low-cost instrumentation. The redox properties of nitro-based explosives, namely the presence of easily reducible nitro groups, ideally lend themselves to electrochemical detection. Advances in the development of nanomaterials show strong potential to create electrochemical sensors for detecting explosives, with aspects such as very high surface area-to-volume ratio, convergent rather than linear diffusion, improved selectivity, catalytic activity, and unique electrical and optical properties which can be exploited for highly sensitive molecular adsorption detection. The goal of this article is to review recent advances in electrochemical detection of nitro-based explosives at working electrodes comprised of different nanomaterials. Specifically we will discuss the electroanalysis of nitro-based explosives on graphene, carbon nanotubes, nanoparticles and nanoporous material, and composites of these materials.

Graphical abstract: Nanomaterial-based electrochemical detection of explosives: a review of recent developments

Article information

Article type
Critical Review
Submitted
16 Apr 2013
Accepted
08 Jun 2013
First published
10 Jun 2013

Anal. Methods, 2013,5, 4296-4309

Nanomaterial-based electrochemical detection of explosives: a review of recent developments

A. M. O'Mahony and J. Wang, Anal. Methods, 2013, 5, 4296 DOI: 10.1039/C3AY40636A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements