Jump to main content
Jump to site search

Issue 9, 2013
Previous Article Next Article

The stability of thin polymer films as controlled by changes in uniformly sputtered gold

Author affiliations

Abstract

The stability of polystyrene thin films of low molecular weight on a solid substrate is shown to be controlled by the presence of uniformly distributed gold sputtered at the air–polymer interface. Continuous gold coverage causes the formation of wrinkles. High coverage and Au nanoparticle (NP) density leads to the development of a spinodal instability while low coverage and NP density retards the nucleation dewetting mechanism that beads up the thin polymer film into drops when no coverage is present. Heating at temperature larger than the polymer glass transition temperature for extended periods allows the gold NPs to coalesce and rearrange. The area of polymer surface covered by NPs decreases as a result and this drives the films from unstable to metastable states. When the gold NPs are interconnected by polymer chains a theoretically predicted spinodal instability that patterns the film surface is experimentally observed. Suppression of the instability and a return to a flat film occurs when the polymer interconnections between particles are broken. While the polymer films maintain their physical continuity changes in their chemical surface composition and thickness are observed. The observed film metastability is nevertheless in agreement with theoretical prediction that includes these surface changes.

Graphical abstract: The stability of thin polymer films as controlled by changes in uniformly sputtered gold

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Sep 2012, accepted on 09 Jan 2013 and first published on 22 Jan 2013


Article type: Paper
DOI: 10.1039/C3SM27130G
Citation: Soft Matter, 2013,9, 2695-2702
  •   Request permissions

    The stability of thin polymer films as controlled by changes in uniformly sputtered gold

    G. Amarandei, C. O'Dwyer, A. Arshak and D. Corcoran, Soft Matter, 2013, 9, 2695
    DOI: 10.1039/C3SM27130G

Search articles by author

Spotlight

Advertisements