Issue 44, 2013

Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability

Abstract

Enzyme encapsulation is an attractive method among the different immobilization strategies to improve the reusability and stability of enzymes because it can separate enzymes from a hazardous external environment. However, current encapsulation methods have limitations including enzyme leakage. In this study, a new approach based on a two-step soft templating method has been proposed to encapsulate lipase within substrate permeable mesoporous silica yolk–shell spheres. In the first step, lipase was immobilized onto epoxy functionalized silica nanospheres that serve as the core materials. The core materials were mixed with a fluorocarbon surfactant, FC4, to form a core–vesicle complex. In the second step, a mesoporous silica shell was assembled surrounding the core–vesicle complex to form the yolk–shell structure with the lipase encapsulated. The mesoporous silica shell has a pore size of 2.1 nm, which is permeable to the reactant and product while isolating the enzymes from harmful external conditions. The encapsulated lipase retained 87.5% of its activity after thermal treatment at 70 °C for 2 hours while the free enzyme lost 99.5% of its activity under the same treatment. Importantly, the encapsulated lipase shows significantly enhanced resistance to degradation by proteases.

Graphical abstract: Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2013
Accepted
19 Aug 2013
First published
21 Aug 2013

RSC Adv., 2013,3, 22008-22013

Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability

Z. Y. Zhao, J. Liu, M. Hahn, S. Qiao, A. P. J. Middelberg and L. He, RSC Adv., 2013, 3, 22008 DOI: 10.1039/C3RA43382J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements