Jump to main content
Jump to site search

Issue 11, 2013
Previous Article Next Article

Self-organizing surface-initiated polymerization, templated self-sorting and templated stack exchange: synthetic methods to build complex systems

Author affiliations

Abstract

In nature, spectacular function is achieved by highly sophisticated supramolecular architectures. Little is known what we would obtain if we could create complexity with similar precision, because the synthetic methods to do so are not available. This account summarizes recent approaches conceived to improve on this situation. With self-organizing surface-initiated polymerization (SOSIP), charge-transporting stacks can be grown directly on solid substrates with molecular-level precision. The extension to templated self-sorting (SOSIP-TSS) offers a supramolecular approach to multicomponent architectures. A solid theoretical framework for the transcription of information by templated self-sorting has been introduced, intrinsic templation efficiencies up to 97% have been achieved, and the existence of self-repair has been shown. The extension to templated stack exchange (SOSIP-TSE) offers the complementary covalent approach. Compatibility of this robust method with the creation of double-channel architectures with antiparallel two-component gradients has been demonstrated.

Graphical abstract: Self-organizing surface-initiated polymerization, templated self-sorting and templated stack exchange: synthetic methods to build complex systems

Back to tab navigation

Article information


Submitted
27 Nov 2012
Accepted
08 Jan 2013
First published
29 Jan 2013

This article is Open Access

Org. Biomol. Chem., 2013,11, 1754-1765
Article type
Emerging Area

Self-organizing surface-initiated polymerization, templated self-sorting and templated stack exchange: synthetic methods to build complex systems

M. Lista, E. Orentas, J. Areephong, P. Charbonnaz, A. Wilson, Y. Zhao, A. Bolag, G. Sforazzini, R. Turdean, H. Hayashi, Y. Domoto, A. Sobczuk, N. Sakai and S. Matile, Org. Biomol. Chem., 2013, 11, 1754
DOI: 10.1039/C3OB27303B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements