Volume 166, 2013

Block copolymers in giant unilamellar vesicles with proteins or with phospholipids

Abstract

Biocompatible, highly water-soluble, nonionic, amphiphilic block copolymers having different hydrophobic blocks and architectures, but similar molecular size and chemical nature of the hydrophilic blocks, were investigated to check for their ability to form hybrid giant unilamellar vesicles with proteins, and for their interactions with giant unilamellar phospholipid vesicles (GUV). PGM14-b-PPO34-b-PGM14 (PGM-PPO-PGM) consists of a poly(propylene oxide) middle block and outer poly(glycerol monomethacrylate) blocks. Ch-PEG32-b-lPG18 (Ch-PEG-lPG) and Ch-PEG30-b-hbPG17 (Ch-PEG-hbPG) have a linear poly(ethylene glycol) block, linked to a cholesterol end group and to a linear (lPG) or hyperbranched (hbPG) polyglycerol block. Fluorescently-labelled polymers were synthesised to image and analyse the self-assembling and interaction processes using confocal laser scanning microscopy (CLSM). By implementing a novel strategy for polymersomes formation the copolymers were found to spontaneously form giant unilamellar vesicles with proteins in aqueous solution. Furthermore, the investigation of the interaction of the block copolymers with different phospholipid GUVs provided detailed information about the structure–behaviour relationship. Additionally, it was found that these neutral copolymers are able to cross artificial and natural phospholipid membranes.

Article information

Article type
Paper
Submitted
25 Apr 2013
Accepted
23 May 2013
First published
23 May 2013

Faraday Discuss., 2013,166, 303-315

Block copolymers in giant unilamellar vesicles with proteins or with phospholipids

R. Schöps, E. Amado, S. S. Müller, H. Frey and J. Kressler, Faraday Discuss., 2013, 166, 303 DOI: 10.1039/C3FD00062A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements