Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 9, 2013
Previous Article Next Article

On the role of intermixed phases in organic photovoltaic blends

Author affiliations


Recently, an intermixed phase has been identified within organic photovoltaic (OPV) bulk heterojunction (BHJ) systems that can exist in addition to relatively phase-pure regions, highlighting the need for a refined picture of the solid-state microstructure of donor–acceptor blends and for gaining further understanding of the exact nature and role such intermixed phases play in such devices. Here we manipulate the microstructure of polymer–fullerene systems via processing means and the selection of the molecular weight of the donor polymer. This manipulation is used as a tool to vary the fraction of intermixed phase present and its effects on the structure and subsequently the opto-electronic processes. We find clear relationships between the state of mixing and amount of exciton quenching and number of polarons generated per absorbed photon. Furthermore, we observe that blend systems incorporating higher molecular weight polymer result in a greater yield of dissociated polarons, likely due to the increase of the intermixed fraction.

Graphical abstract: On the role of intermixed phases in organic photovoltaic blends

Back to tab navigation

Supplementary files

Article information

28 May 2013
23 Jul 2013
First published
23 Jul 2013

Energy Environ. Sci., 2013,6, 2756-2764
Article type

On the role of intermixed phases in organic photovoltaic blends

P. Westacott, J. R. Tumbleston, S. Shoaee, S. Fearn, J. H. Bannock, J. B. Gilchrist, S. Heutz, J. deMello, M. Heeney, H. Ade, J. Durrant, D. S. McPhail and N. Stingelin, Energy Environ. Sci., 2013, 6, 2756
DOI: 10.1039/C3EE41821A

Social activity

Search articles by author