Issue 7, 2013

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry

Abstract

Photoelectrochemical water splitting is a promising route for the renewable production of hydrogen fuel. This work presents the results of a technical and economic feasibility analysis conducted for four hypothetical, centralized, large-scale hydrogen production plants based on this technology. The four reactor types considered were a single bed particle suspension system, a dual bed particle suspension system, a fixed panel array, and a tracking concentrator array. The current performance of semiconductor absorbers and electrocatalysts were considered to compute reasonable solar-to-hydrogen conversion efficiencies for each of the four systems. The U.S. Department of Energy H2A model was employed to calculate the levelized cost of hydrogen output at the plant gate at 300 psi for a 10 tonne per day production scale. All capital expenditures and operating costs for the reactors and auxiliaries (compressors, control systems, etc.) were considered. The final cost varied from $1.60–$10.40 per kg H2 with the particle bed systems having lower costs than the panel-based systems. However, safety concerns due to the cogeneration of O2 and H2 in a single bed system and long molecular transport lengths in the dual bed system lead to greater uncertainty in their operation. A sensitivity analysis revealed that improvement in the solar-to-hydrogen efficiency of the panel-based systems could substantially drive down their costs. A key finding is that the production costs are consistent with the Department of Energy's targeted threshold cost of $2.00–$4.00 per kg H2 for dispensed hydrogen, demonstrating that photoelectrochemical water splitting could be a viable route for hydrogen production in the future if material performance targets can be met.

Graphical abstract: Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry

Article information

Article type
Analysis
Submitted
10 Mar 2013
Accepted
20 May 2013
First published
12 Jun 2013

Energy Environ. Sci., 2013,6, 1983-2002

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry

B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller and T. F. Jaramillo, Energy Environ. Sci., 2013, 6, 1983 DOI: 10.1039/C3EE40831K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements