Issue 8, 2013

Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction

Abstract

The catalytic activity for the oxygen reduction reaction (ORR) of both the pristine and defect-possessing hexagonal boron nitride (h-BN) monolayer and H-terminated nanoribbon have been studied theoretically using density functional theory. It is demonstrated that an inert h-BN monolayer can be functionalized and become catalytically active by nitrogen doping. It is shown that the energetics of adsorption of O2, O, OH, OOH, and H2O on N atom impurities in the h-BN monolayer (NB@h-BN) is quite similar to that known for a Pt(111) surface. The specific mechanism of destructive and cooperative adsorption of ORR intermediates on the surface point defects is discussed. It is demonstrated that accounting for entropy and zero-point energy (ZPE) corrections results in destabilization of the ORR intermediates adsorbed on NB@h-BN, while solvent effects lead to their stabilization. Therefore, entropy, ZPE and solvent effects partly cancel each other and have to be taken into account simultaneously. Analysis of the free energy changes along the ORR pathway allows us to suggest that a N-doped h-BN monolayer can demonstrate catalytic properties for the ORR under the condition that electron transport to the catalytically active center is provided.

Graphical abstract: Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction

Article information

Article type
Paper
Submitted
20 Aug 2012
Accepted
16 Dec 2012
First published
17 Dec 2012

Phys. Chem. Chem. Phys., 2013,15, 2809-2820

Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction

A. Lyalin, A. Nakayama, K. Uosaki and T. Taketsugu, Phys. Chem. Chem. Phys., 2013, 15, 2809 DOI: 10.1039/C2CP42907A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements