Jump to main content
Jump to site search

Issue 37, 2013
Previous Article Next Article

Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production

Author affiliations

Abstract

Highly efficient hydrogen production can be achieved by three-dimensional (3D) architectures of CdS quantum dots (QDs) incorporated in the porous assembly of marigold-like ZnIn2S4 heterostructures coupled with graphene, leading to an efficient electron transfer between them and the enhancement of the ZnIn2S4 photostability. The as-prepared samples were characterized by X-ray diffraction, electron microscopy, Brunauer–Emmett–Teller analysis, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance absorption spectra, and photoluminescence spectra. Especially, 3 wt% CdS QDs decorated ZnIn2S4 heteroarchitectures showed a high rate of H2-production at 1.9 mmol h−1, more 2.7 times than that of ZnIn2S4. The rate was further increased to 2.7 mmol h−1 with a high quantum efficiency of 56% using the 3 wt% CdS QDs decorated ZnIn2S4 composites coupled with 1 wt% graphene (about 4 times higher than that of the pure ZnIn2S4). Moreover, the CdS QDs/graphene/ZnIn2S4 exhibited strong durability due to the high hydrothermal stability of the flower-like structure and the inhibition of CdS leaching owing to its strong interaction with ZnIn2S4. The excellent photocatalytic performance is ascribed to the enhanced light absorption and the improved separation of photogenerated carriers. This finding highlights the validity of 3D semiconductor heterostructures as effective building blocks for exploring efficient visible-light-active photocatalysts.

Graphical abstract: Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production

Back to tab navigation

Supplementary files

Publication details

The article was received on 02 May 2013, accepted on 17 Jul 2013 and first published on 17 Jul 2013


Article type: Paper
DOI: 10.1039/C3CP51857D
Phys. Chem. Chem. Phys., 2013,15, 15660-15668

  •   Request permissions

    Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production

    J. Hou, C. Yang, H. Cheng, Z. Wang, S. Jiao and H. Zhu, Phys. Chem. Chem. Phys., 2013, 15, 15660
    DOI: 10.1039/C3CP51857D

Search articles by author

Spotlight

Advertisements