Issue 42, 2012

Impact of branching on the viscoelasticity of wormlike reverse micelles

Abstract

We present an investigation on the effect of inter-micellar connections (branches) on the rheology of wormlike micelles. The system chosen is made of lecithin, minute amounts of water and organic solvents. Lecithin and water self-assemble into wormlike reverse micelles that can be branched or unbranched depending on the oil composition (and on the water content). In this respect, cyclohexane favours disconnected reverse micelles while isooctane promotes the formation of branches. By using mixtures of cyclohexane and isooctane as the oil phase and different water/lecithin ratios, the branch density of the system can be finely tuned. PGSE-NMR experiments allowed us to distinguish between branch-free (unbranched) and branched systems and the response of the very same samples to mechanical stress was measured by rheology. This allows, for the first time, an experimental correlation between rheological properties and the presence of branches. It turned out that the presence of a few inter-micellar connections sensibly decreases the zero-shear viscosity measured in steady state flow curves. Comparison with oscillatory rheology experiments indicates that the main effect of branches is to shorten the terminal relaxation time by speeding-up the reptation.

Graphical abstract: Impact of branching on the viscoelasticity of wormlike reverse micelles

Supplementary files

Article information

Article type
Paper
Submitted
02 Jul 2012
Accepted
02 Aug 2012
First published
06 Sep 2012

Soft Matter, 2012,8, 10941-10949

Impact of branching on the viscoelasticity of wormlike reverse micelles

R. Angelico, S. Amin, M. Monduzzi, S. Murgia, U. Olsson and G. Palazzo, Soft Matter, 2012, 8, 10941 DOI: 10.1039/C2SM26528A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements