Issue 20, 2012

Designing dynamic surfaces for regulation of biological responses

Abstract

ABA block copolymers composed of highly methylated polyrotaxane and hydrophobic anchoring terminal segments containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (PMB) (OMe-PRX-PMB) were synthesized as a platform of molecularly dynamic biomaterials. A contact angle measurement indicated that polymer surfaces with higher molecular mobility factors (Mf) estimated from quartz crystal microbalance with dissipation (QCM-D) measurements showed more significant changes in hydrophilicity in response to an environmental change between air and water; the OMe-PRX-PMB surface showed the highest Mf among the prepared polymer surfaces. Fibrinogen adsorption and its conformational analysis estimated by QCM-D and enzyme-linked immunosorbent assay revealed that large amounts of fibrinogen adsorption occurred in a soft manner on the OMe-PRX-PMB surface and that the antibody binding to the C-terminus of the fibrinogen γ chains responsible for platelet adhesion and activation decreased as the Mf value increased. Furthermore, it was found that the OMe-PRX-PMB surface showed low platelet adhesion and high fibroblast adhesion, suggesting that molecular movement on biomaterial surfaces could be one of the key parameters in the regulation of a non-specific biological response.

Graphical abstract: Designing dynamic surfaces for regulation of biological responses

Supplementary files

Article information

Article type
Paper
Submitted
12 Feb 2012
Accepted
05 Mar 2012
First published
04 Apr 2012

Soft Matter, 2012,8, 5477-5485

Designing dynamic surfaces for regulation of biological responses

J. Seo, S. Kakinoki, Y. Inoue, T. Yamaoka, K. Ishihara and N. Yui, Soft Matter, 2012, 8, 5477 DOI: 10.1039/C2SM25318F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements