Issue 16, 2012

Peptide-directed co-assembly of nanoprobes on multimaterial patterned solid surfaces

Abstract

Biocombinatorially selected solid-binding peptides, through their unique material affinity and selectivity, are a promising platform for building up complex hierarchical assemblies of nanoscale materials and molecular probes, targeted to specific practical solid surfaces. Here, we demonstrate the material-specific characteristics of engineered gold-binding and silica-binding peptides through co-assembly onto micro- and nano-patterned gold surfaces on silica substrates. To build hierarchical nanostructures on patterned solid surfaces, we utilize peptides as molecular tools and monitor their behavior by either conjugating biotin to them for specific affinity to streptavidin-coated QDot nanoparticles or labelling them with small fluorescent labels. This biomimetic peptide-based approach could be used as an alternative to conventional chemical coupling and surface functionalization techniques with substantial advantages, allowing simultaneous assembly of two or more inorganic nano-entities and/or molecular probes onto patterned inorganic solid substrates. The results have significant implications in a wide range of potential applications, including controlled assembly of hybrid nanostructures in bionanophotonic and biosensing devices.

Graphical abstract: Peptide-directed co-assembly of nanoprobes on multimaterial patterned solid surfaces

Supplementary files

Article information

Article type
Paper
Submitted
26 Jul 2011
Accepted
09 Jan 2012
First published
16 Feb 2012

Soft Matter, 2012,8, 4327-4334

Peptide-directed co-assembly of nanoprobes on multimaterial patterned solid surfaces

M. Hnilova, C. R. So, E. E. Oren, B. R. Wilson, T. Kacar, C. Tamerler and M. Sarikaya, Soft Matter, 2012, 8, 4327 DOI: 10.1039/C2SM06426J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements