Issue 2, 2012

Enhanced charge transport in nano-confined ionic liquids

Abstract

Charge transport in ionic liquids contained in unidirectional nanoporous membranes (pore diameters: 7.5–10.4 nm) is investigated by combining broadband dielectric spectroscopy (BDS) and pulsed field gradient (PFG)-NMR. This enables one to determine the diffusion coefficient and the diffusion rate over more than 13 decades and to trace its temperature dependence. Under conditions of nanometric confinement, a change from a Vogel–Fulcher–Tammann into an Arrhenius-like thermal activation is observed, resulting in an enhancement of diffusivities by more than two orders of magnitude. The effect becomes more pronounced with decreasing pore diameter. It is attributed to changes in molecular packing and hence in density leading to higher mobility and electrical conductivity.

Graphical abstract: Enhanced charge transport in nano-confined ionic liquids

Article information

Article type
Communication
Submitted
18 Aug 2011
Accepted
26 Oct 2011
First published
09 Nov 2011

Soft Matter, 2012,8, 289-293

Enhanced charge transport in nano-confined ionic liquids

C. Iacob, J. R. Sangoro, W. K. Kipnusu, R. Valiullin, J. Kärger and F. Kremer, Soft Matter, 2012, 8, 289 DOI: 10.1039/C1SM06581E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements