Issue 3, 2012

Hydrogen-bonded multilayers of micelles of a dually responsive dicationic block copolymer

Abstract

We report the fabrication of hydrogen-bonded multilayers of micelles of a dually responsive, dicationic block copolymer, poly[2-(N-morpholino)ethyl methacrylate-block-2-(diisopropylamino)ethyl methacrylate] (PMEMA-b-PDPA). By taking advantage of the difference in the hydrophilicity of PMEMA and PDPA blocks, micelles with a PMEMA-corona and a PDPA-core were obtained above pH 6.5 and were assembled layer-by-layer at the surface with tannic acid (TA) at pH 7.4 through hydrogen bonding interactions between morpholino units of PMEMA and hydroxyl groups of TA. Destruction of PMEMA-b-PDPA micelles/TA films could be controlled at both acidic and basic conditions. At basic pH (pH = 8.75), multilayers disintegrated due to ionization of TA and disruption of hydrogen bonding interactions between layers of micelles and TA. At moderately acidic pH values, partially dissolved PMEMA-b-PDPA micelles and monomers underwent a restructuring with TA molecules and remained adsorbed at the surface. Complete dissolution of the multilayers occurred at around pH 3.6 due to further protonation of the tertiary amino groups on both blocks of PMEMA-b-PDPA, resulting in a charge imbalance between PMEMA-b-PDPA and TA layers followed by disintegration of the films. We have also encapsulated pyrene in the micellar cores and found that pyrene released from PMEMA-b-PDPA micelles/TA films increased 1.5- and 2.5-fold when the pH was decreased from 7.5 to 6 and 5, respectively. Such an increase in the amount of pyrene released was due to pH-controlled dissolution of the micellar cores. We have also found that at pH 7.5, increasing the temperature to 40 °C enhanced the release of pyrene by approximately 2-fold. Such an increase is due to lower critical solution temperature (LCST) behaviour of coronal PMEMA chains leading to temperature-induced conformational changes on the coronal chains, facilitating the release of pyrene through the coronal chains into the solution. Hydrogen bonded multilayers of micelles of a dicationic block copolymer are interesting due to the response of both multilayers and micellar cores at different pH paving the way for multiple pH-controlled delivery of functional molecules from surfaces.

Graphical abstract: Hydrogen-bonded multilayers of micelles of a dually responsive dicationic block copolymer

Article information

Article type
Paper
Submitted
04 Jul 2011
Accepted
11 Oct 2011
First published
09 Nov 2011

Soft Matter, 2012,8, 827-836

Hydrogen-bonded multilayers of micelles of a dually responsive dicationic block copolymer

I. Erel, H. E. Karahan, C. Tuncer, V. Bütün and A. L. Demirel, Soft Matter, 2012, 8, 827 DOI: 10.1039/C1SM06248D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements