Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells†
Abstract
Activated carbon (AC) air cathodes were constructed using variable amounts of carbon (43–171 mg cm−2) and an inexpensive binder (10 wt% polytetrafluoroethylene, PTFE), and with or without a porous cloth wipe-based diffusion layer (DL) that was sealed with PDMS. The cathodes with the highest AC loading of 171 mg cm−2, and no diffusion layer, produced 1255 ± 75 mW m−2 and did not appreciably vary in performance after 1.5 months of operation. Slightly higher power densities were initially obtained using 100 mg cm−2 of AC (1310 ± 70 mW m−2) and a PDMS/wipe diffusion layer, although the performance of this cathode decreased to 1050 ± 70 mW m−2 after 1.5 months, and 1010 ± 190 mW m−2 after 5 months. AC loadings of 43 mg cm−2 and 100 mg cm−2 did not appreciably affect performance (with diffusion layers). MFCs with the Pt