Issue 17, 2012

Dramatically improved friction reduction and wear resistance by in situ formed ionic liquids

Abstract

A new concept of in situ preparing ionic liquid (IL) lubricant additives is described in the present work. It was found that IL additives, [Li(PEG)]X, could be obtained simply by adding lithium salts (LiX) to the base oil (PEG). The in situ formed ILs have extremely good solubility in PEG and exhibit excellent friction-reducing and anti-wear properties for the lubrication of steel/steel contacts. The tribological properties are even more effective than those of conventional ILs such as 1-ethyl-3-methyl imidazolium tetrafluoroborate (L-B102), 1-methyl-3-hexylimidazolium hexafluorophosphate (L-P106) and 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide (L-F102). The easy preparation, extremely good solubility and excellent tribological properties of [Li(PEG)]X have great advantages as compared with conventional ILs, which will undoubtedly lower the cost of IL preparation and provide a completely new strategy of industrial application of ILs.

Graphical abstract: Dramatically improved friction reduction and wear resistance by in situ formed ionic liquids

Article information

Article type
Paper
Submitted
09 May 2012
Accepted
14 May 2012
First published
28 Jun 2012

RSC Adv., 2012,2, 6824-6830

Dramatically improved friction reduction and wear resistance by in situ formed ionic liquids

M. Fan, Y. Liang, F. Zhou and W. Liu, RSC Adv., 2012, 2, 6824 DOI: 10.1039/C2RA20888A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements