Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 10, 2012
Previous Article Next Article

Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications

Author affiliations

Abstract

A hybrid structure of zinc oxide (ZnO) on three dimensional (3D) graphene foam has been synthesized by chemical vapor deposition (CVD) growth of graphene followed by a facial in situ precipitation of ZnO nanorods under hydrothermal conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used to characterize the morphology and structure of graphene/ZnO hybrids. The results show that the ZnO nanorods have high crystallinity and cluster uniformly on graphene skeleton to form flower-like nanostructures. Serving as a free-standing electrode, the electrochemical and biosensing performance of graphene/ZnO hybrids are studied by cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge–discharge and amperometric measurements. It is found that the graphene/ZnO hybrids display superior capacitive performance with high specific capacitance (∼400 F g−1) as well as excellent cycle life, making them suitable for high-performance energy storage applications. Furthermore, the graphene/ZnO hybrids exhibit high sensitivity for detection of [Fe(CN)6]3+ and dopamine, with the extrapolated lower detection limits of ∼1.0 μM and ∼10.0 nM respectively. These results demonstrate the potential of free-standing graphene/ZnO hybrid electrodes for the development of highly sensitive electrochemical sensors.

Graphical abstract: Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications

Back to tab navigation

Article information


Submitted
14 Dec 2011
Accepted
28 Feb 2012
First published
02 Mar 2012

RSC Adv., 2012,2, 4364-4369
Article type
Paper

Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications

X. Dong, Y. Cao, J. Wang, M. B. Chan-Park, L. Wang, W. Huang and P. Chen, RSC Adv., 2012, 2, 4364
DOI: 10.1039/C2RA01295B

Social activity

Search articles by author

Spotlight

Advertisements