Issue 5, 2012

Programmable digital nonvolatile memory behaviors of donor–acceptor polyimides bearing triphenylamine derivatives: effects of substituents

Abstract

Two aromatic polyimides bearing triphenylamine (TPA) derivatives with reasonably high molecular weights were synthesized: poly(N-(2,4,6-trimethylphenyl)-N,N-4,4′-diphenylene hexafluoroisopropylidenediphthalimide) (6F-TPA-Me3 PI) and poly(N-(4-dimethylaminophenyl)-N,N-4,4′-diphenylene hexafluoroisopropylidenediphthalimide) (6F-TPA-NMe2 PI). These polymers were thermally and dimensionally very stable, providing high-quality nanoscale thin films using a conventional solution coating process. The film densities, optical properties, and electrochemical properties were determined. The polymers displayed a different nonvolatile memory behavior that depended on the substituents of the TPA unit. The 6F-TPA-Me3 PI film showed a unipolar write-once-read-many-times (WORM) memory behavior, whereas the 6F-TPA-NMe2 PI film revealed unipolar and bipolar switching memory behavior. All PI films displayed excellent retention in both the OFF- and ON-states, even under ambient conditions. The ON/OFF current ratio was high, up to 108–109. All memory behaviors were governed by a mechanism that involved trap-limited space charge limited conduction and local filament formation. The memory characteristics may originate from the electron-donating TPA and substituents and from the electron-accepting hexafluoroisopropylidenyl and imide units in the polymer backbone, which acted as effective charge-trapping sites. The film density was found to significantly influence the memory behavior. This study demonstrated that the thermally and dimensionally stable 6F-TPA-Me3 and 6F-TPA-NMe2 PIs are suitable active materials for the low-cost mass production of high-performance programmable memory devices that can be operated with very low power consumption. Moreover, the memory mode and its polarity may be tuned by changing the substituent on the TPA unit.

Graphical abstract: Programmable digital nonvolatile memory behaviors of donor–acceptor polyimides bearing triphenylamine derivatives: effects of substituents

Article information

Article type
Paper
Submitted
29 Dec 2011
Accepted
26 Feb 2012
First published
21 Mar 2012

Polym. Chem., 2012,3, 1276-1283

Programmable digital nonvolatile memory behaviors of donor–acceptor polyimides bearing triphenylamine derivatives: effects of substituents

T. J. Lee, Y. Ko, H. Yen, K. Kim, D. M. Kim, W. Kwon, S. G. Hahm, G. Liou and M. Ree, Polym. Chem., 2012, 3, 1276 DOI: 10.1039/C2PY00617K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements