Issue 4, 2012

Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine

Abstract

Conjugated microporous polymers (CMPs) based on the electron-withdrawing 1,3,5-triazine node (TCMPs) were synthesized by palladium-catalyzed Sonogashira-Hagihara cross-coupling. The porosity in these polymers was found to be comparable to the analogous 1,3,5-connected benzene CMP systems that we reported previously, demonstrating that nodes can be substituted in these amorphous materials in a rational manner, much as for certain crystalline porous metal–organic frameworks. The CO2 adsorption properties of the TCMPs were measured and compared with the corresponding CMPs, and it was found that the TCMP networks adsorbed more CO2 than CMP analogues with comparable BET surface areas. Network TNCMP-2 showed the highest surface area (995 m2 g−1) and a CO2 uptake of 1.45 mmol g−1 at 1 bar at 298 K. The band gap in these triazine-based CMPs could also be engineered through copolymerization with other functional monomers.

Graphical abstract: Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2011
Accepted
05 Jan 2012
First published
30 Jan 2012

Polym. Chem., 2012,3, 928-934

Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine

S. Ren, R. Dawson, A. Laybourn, J. Jiang, Y. Khimyak, D. J. Adams and A. I. Cooper, Polym. Chem., 2012, 3, 928 DOI: 10.1039/C2PY00585A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements