Controlling the nano–bio interface to build collagen–silica self-assembled networks†
Abstract
Bio-hybrid networks are designed based on the self-assembly of surface-engineered collagen–silica nanoparticles. Collagen triple helices can be confined on the surface of sulfonate-modified silica particles in a controlled manner. This gives rise to hybrid building blocks with well-defined diameters and surface potentials. Taking advantage of the self-assembling properties of collagen, collagen–silica networks are further built-up in solution. The structural and specific recognition properties of the collagen fibrils are well-preserved within the hybrid assembly. A combination of calorimetry, dynamic light scattering, zetametry and microscopy studies indicates that network formation occurs via a surface-mediated mechanism where pre-organization of the protein chains on the particle surface favors the fibrillogenesis process. These results enlighten the importance of the nano–bio interface on the formation and properties of self-assembled bionanocomposites.