Issue 1, 2012

Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors

Abstract

A large-area, continuous, few-layer reduced graphene oxide (rGO) thin film has been fabricated on a Si/SiO2 wafer using the Langmuir–Blodgett (LB) method followed by thermal reduction. After photochemical reduction of Pt nanoparticles (PtNPs) on rGO, the obtained PtNPs/rGO composite is employed as the conductive channel in a solution-gated field effect transistor (FET), which is then used for real-time detection of hybridization of single-stranded DNA (ssDNA) with high sensitivity (2.4 nM). Such a simple, but effective method for fabrication of rGO-based transistors shows great potential for mass-production of graphene-based electronic biosensors.

Graphical abstract: Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors

Article information

Article type
Paper
Submitted
22 Aug 2011
Accepted
28 Sep 2011
First published
16 Nov 2011

Nanoscale, 2012,4, 293-297

Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors

Z. Yin, Q. He, X. Huang, J. Zhang, S. Wu, P. Chen, G. Lu, P. Chen, Q. Zhang, Q. Yan and H. Zhang, Nanoscale, 2012, 4, 293 DOI: 10.1039/C1NR11149C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements