Issue 8, 2012

Comparative analysis of the biosynthetic systems for fungal bicyclo[2.2.2]diazaoctane indole alkaloids: the (+)/(−)-notoamide, paraherquamide and malbrancheamide pathways

Abstract

The biosynthesis of fungal bicyclo[2.2.2]diazaoctane indole alkaloids with a wide spectrum of biological activities have attracted increasing interest. Until recently, the details of these biosynthetic pathways have remained largely unknown due to lack of information on the fungal derived biosynthetic gene clusters. Herein, we report identification of three new fungal gene clusters responsible for biosynthesis of a select group of bicyclo[2.2.2]diazaoctane indole alkaloids including (+)-notoamide, paraherquamide and malbrancheamide by genome mining. In each gene cluster, we identified a non-ribosomal peptide synthetase, a variant number of prenyltransferases, and a series of oxidases responsible for the diverse tailoring modifications of the cyclodipeptide structural core. Based on the comparative analysis of four natural product metabolic systems including (+)/(−)-notoamide, paraherquamide and malbrancheamide, we were able to propose an enzyme for each step in the respective biosynthetic pathways through deep gene annotation and on-going biochemical studies. We proposed that two different types of intramolecular Diels-Alderases operate to generate the monooxopiperazine and dioxopiperazine ring systems for this class of alkaloid natural products.

Graphical abstract: Comparative analysis of the biosynthetic systems for fungal bicyclo[2.2.2]diazaoctane indole alkaloids: the (+)/(−)-notoamide, paraherquamide and malbrancheamide pathways

Supplementary files

Article information

Article type
Concise Article
Submitted
01 Feb 2012
Accepted
13 Mar 2012
First published
16 Apr 2012

Med. Chem. Commun., 2012,3, 987-996

Comparative analysis of the biosynthetic systems for fungal bicyclo[2.2.2]diazaoctane indole alkaloids: the (+)/(−)-notoamide, paraherquamide and malbrancheamide pathways

S. Li, K. Srinivasan, H. Tran, F. Yu, J. M. Finefield, J. D. Sunderhaus, T. J. McAfoos, S. Tsukamoto, R. M. Williams and D. H. Sherman, Med. Chem. Commun., 2012, 3, 987 DOI: 10.1039/C2MD20029E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements