Issue 20, 2012

A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing

Abstract

This manuscript describes an experimental study of the production of micro-scale droplets of the room-temperature liquid alloy eutectic gallium indium (EGaIn) formed using a microfluidic flow-focusing device. The EGaIn surface oxidizes readily to form a passivating oxide “skin” that imparts some mechanical stability to the resulting microspheres, but does not appear to affect the dynamics of droplet formation. EGaIn has an interfacial tension nearly an order of magnitude larger than typical water-in-oil systems that are used to study droplet production in microfluidic flow-focusing devices. The size of the microdroplets increase as the ratio of the flow rates of the dispersed and continuous-phase increase for both EGaIn-in-glycerol and water-in-oil systems; however, these fluid pairs form droplets through different dispersing modes at otherwise identical flow conditions (i.e., flow rate ratios and capillary numbers). Consequently, the EGaIn droplets are larger than the water droplets. The difference in dispersing modes and droplet size are attributed to the relatively larger interfacial and inertial forces of the EGaIn system compared to the water-in-oil system. The addition of polyvinyl alcohol (PVA), which is known to bind to oxide surfaces, to the continuous phase yields stable, monodisperse emulsions of liquid metal. These emulsions can be destabilized on demand by changing the solution pH, allowing the liquid metal to be recovered. The ability of the PVA to bind to the liquid metal also influences droplet production by changing the shape of the liquid as it approaches the orifice of the flow focusing device, which results in droplets with smaller diameters relative to those formed without PVA.

Graphical abstract: A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2012
Accepted
27 Jul 2012
First published
01 Aug 2012

Lab Chip, 2012,12, 3961-3967

A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing

J. Thelen, M. D. Dickey and T. Ward, Lab Chip, 2012, 12, 3961 DOI: 10.1039/C2LC40492C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements