Issue 11, 2012

Nanomaterials and lab-on-a-chip technologies


Lab-on-a-chip (LOC) platforms have become important tools for sample analysis and treatment with interest for DNA, protein and cells studies or diagnostics due to benefits such as the reduced sample volume, low cost, portability and the possibility to build new analytical devices or be integrated into conventional ones. These platforms have advantages of a wide set of nanomaterials (NM) (i.e. nanoparticles, quantum dots, nanowires, graphene etc.) and offer excellent improvement in properties for many applications (i.e. detectors sensitivity enhancement, biolabelling capability along with other in-chip applications related to the specificities of the variety of nanomaterials with optical, electrical and/or mechanical properties). This review covers the last trends in the use of nanomaterials in microfluidic systems and the related advantages in analytical and bioanalytical applications. In addition to the applications of nanomaterials in LOCs, we also discuss the employment of such devices for the production and characterization of nanomaterials. Both framed platforms, NMs based LOCs and LOCs for NMs production and characterization, represent promising alternatives to generate new nanotechnology tools for point-of-care diagnostics, drug delivery and nanotoxicology applications.

Graphical abstract: Nanomaterials and lab-on-a-chip technologies

Article information

Article type
Critical Review
13 Jan 2012
19 Mar 2012
First published
21 Mar 2012

Lab Chip, 2012,12, 1932-1943

Nanomaterials and lab-on-a-chip technologies

M. Medina-Sánchez, S. Miserere and A. Merkoçi, Lab Chip, 2012, 12, 1932 DOI: 10.1039/C2LC40063D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity