A microfluidic channel is integrated with a tin oxide-based generic gas sensor on a PMMA (polymethyl methacrylate) substrate to fabricate a miniature gas analyzer. The analyte gas diffuses along the air-filled channel to affect the sensor installed in a microcavity positioned at the end of the channel. Analyte diffusion rates, experimentally estimated based on the temporal responses received from the sensor, are connected to the analyte's interactions with the channel walls as well as its diffusivity in air. The analyte-related information is extracted from the recorded responses and used for analyte recognition. A single PMMA channel of 80 μm × 3 mm × 50 mm dimensions facilitates the correct classification of single component contaminants each introduced in a wide concentration range in air. The device is also shown to identify 15 ppm of 2-butanol in air contaminated with 1500 ppm of 1-butanol. The gas analyzer fabricated based on this concept is durable, inexpensive, handheld and suitable for a variety of applications.