Issue 45, 2012

UV induced formation of transparent Au–Ag nanowire mesh film for repairable OLED devices

Abstract

The next generation of optoelectronic devices requires transparent conductive electrodes to be flexible, cheap, and compatible with large scale manufacturing processes. Indium Tin Oxide (ITO) electrodes are often used due to their superior transparency and conductance, however they are brittle, expensive and their fabrication requires vacuum conditions which restrict scale-up. One possible alternative to the traditional ITO electrode is the metal nanowire mesh (MNWM) electrode, which is transparent, conductive, flexible and easy to produce. In this work we present the preparation and characterization of a simple organic light emitting diode (OLED) device based on a transparent electrode made of ultrathin MNWM and a comparison to an ITO based device. We have found that MNWM electrodes offer a suitable alternative to ITO electrodes in OLED devices. We have also found that the failure rate for devices due to short circuits between the top and bottom electrodes was smaller in MNWM based devices compared to ITO based devices since the MNWM devices could be repaired to present normal OLED behavior by selectively burning the nanowires forming the short. The ability to “heal” organic devices presents an important advantage and also allows for future uses in applications such as roll to roll printing.

Graphical abstract: UV induced formation of transparent Au–Ag nanowire mesh film for repairable OLED devices

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2012
Accepted
20 Sep 2012
First published
21 Sep 2012

J. Mater. Chem., 2012,22, 24042-24047

UV induced formation of transparent Au–Ag nanowire mesh film for repairable OLED devices

T. L. Belenkova, D. Rimmerman, E. Mentovich, H. Gilon, N. Hendler, S. Richter and G. Markovich, J. Mater. Chem., 2012, 22, 24042 DOI: 10.1039/C2JM35291E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements