Issue 40, 2012

Graphene quantum resistive sensing skin for the detection of alteration biomarkers

Abstract

Sensing skins made of reduced graphene oxide (RGO) based quantum resistive vapour sensors (vQRS) have been developed by combining two original processes, i.e., the synthesis of phase transferable graphene sheets using ionic liquid polymers (PIL) and the structuring of 3D conducting architectures by the spray layer by layer (sLbL) technique. Many advantages can be derived from this new technology, such as versatility of fabrication (sprayability, no need for a clean room), flexibility, potential transparency and low cost, making vQRS skins very attractive to develop the next generation e-noses with quick response time (less than 3 s), room temperature operability, high sensitivity and adjustable selectivity. This can open the door to a wide range of applications, in particular smart packaging, making the monitoring of the quality/safety of food possible by following VOC biomarkers emitted during its alteration. RGO based QRS are also expected to be biocompatible, exempt from cytotoxicity and the risks of migration of RGO sheets in food must be very limited, thanks to their very large surface/thickness ratio and to their embedment into a polymer matrix. Comparing pristine RGO, RGO–PIL and RGO–PIL/PEDOT QRS undoubtedly establishes the superiority of the latter in terms of sensitivity and selectivity for the detection of volatile organic solvents (VOCs) released from food during its degradation. The reason for this can be found in the unique architecture of the transducer, optimizing functionalization in solution by the combined action of PIL and PEDOT and structuring in the solid state by the step by step assembly in 3D by sLbL.

Graphical abstract: Graphene quantum resistive sensing skin for the detection of alteration biomarkers

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2012
Accepted
31 Aug 2012
First published
31 Aug 2012

J. Mater. Chem., 2012,22, 21754-21766

Graphene quantum resistive sensing skin for the detection of alteration biomarkers

T. T. Tung, M. Castro, T. Y. Kim, K. S. Suh and J. Feller, J. Mater. Chem., 2012, 22, 21754 DOI: 10.1039/C2JM34806C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements