Issue 41, 2012

Heterogeneous nucleation of protein crystals using nanoporous gold nucleants

Abstract

We present a theory and experiments that help clarify the origin of the effectiveness of nanoporous substrates in the heterogeneous nucleation of protein crystals. The central idea tested here is that when a substrate (or “nucleant”) possesses pores of the order of the hydrodynamical radius of a protein, then the entropic penalty associated with nucleating a protein crystal on that surface may be alleviated. Model experiments using lysozyme and nanoporous gold (NPG) substrates suggest that there is indeed a reduction in the entropy associated with creating critical nuclei, but the magnitude of the reduction is small. Taken together with further examination of protein crystallization with NPG nucleants using four other proteins, our aggregate results suggest that surface chemistry and surface area effects play the dominant role in nucleation when using these nanoporous nucleants.

Graphical abstract: Heterogeneous nucleation of protein crystals using nanoporous gold nucleants

Article information

Article type
Paper
Submitted
11 Jul 2012
Accepted
31 Aug 2012
First published
31 Aug 2012

J. Mater. Chem., 2012,22, 21928-21934

Heterogeneous nucleation of protein crystals using nanoporous gold nucleants

F. Kertis, S. Khurshid, O. Okman, J. W. Kysar, L. Govada, N. Chayen and J. Erlebacher, J. Mater. Chem., 2012, 22, 21928 DOI: 10.1039/C2JM34527G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements