Issue 33, 2012

Advanced energy storage device: a hybrid BatCap system consisting of battery–supercapacitor hybrid electrodes based on Li4Ti5O12–activated-carbon hybrid nanotubes

Abstract

The battery–supercapacitor hybrid electrode, consisting of both faradaic rechargeable battery components and non-faradaic rechargeable supercapacitor components in a single electrode, is successfully developed using Li4Ti5O12–activated carbon (LTO–AC) hybrid nanotubes in a negative electrode for an advanced energy storage device. Li4Ti5O12 and PVA-derived activated carbon are hybridized with morphological control over the one-dimensional (1D) tubular structures via an in situ sol–gel reaction combined with electrospinning, followed by a hydrothermal reaction and appropriate heat treatment. The prepared LTO–AC hybrid nanotubes are tested at a variety of charge–discharge rates as anode materials for use in lithium-ion rechargeable batteries that deliver a specific capacity in the range of 128–84 mA h g−1 over a 100–4000 mA g−1 charge–discharge rate in the potential range 1.0–2.5 V vs. Li/Li+. The hybridized LTO–AC hybrid nanotubes electrode is included in a new type of hybrid energy storage cell, denoted as BatCap, as the negative electrode using commercialized activated carbon (AC) as the positive electrode. The hybrid BatCap cell exhibits a high energy density of 32 W h kg−1 and a high power density of 6000 W kg−1, comparable to the properties of a typical AC symmetric capacitor.

Graphical abstract: Advanced energy storage device: a hybrid BatCap system consisting of battery–supercapacitor hybrid electrodes based on Li4Ti5O12–activated-carbon hybrid nanotubes

Supplementary files

Article information

Article type
Paper
Submitted
06 May 2012
Accepted
22 Jun 2012
First published
19 Jul 2012

J. Mater. Chem., 2012,22, 16986-16993

Advanced energy storage device: a hybrid BatCap system consisting of battery–supercapacitor hybrid electrodes based on Li4Ti5O12–activated-carbon hybrid nanotubes

H. S. Choi, J. H. Im, T. Kim, J. H. Park and C. R. Park, J. Mater. Chem., 2012, 22, 16986 DOI: 10.1039/C2JM32841K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements