Issue 31, 2012

Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices

Abstract

A comparison of grazing incidence wide-angle X-ray scattering (GiWAXS) and differential scanning calorimetric measurements (DSC) was used to identify the influence of a dominantly amorphous small band gap polymer material poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) on the crystallinity of a semi-crystalline polymer/fullerene composite. In binary blends the low band gap polymer does not influence the crystalline part of P3HT, but does influence the crystallinity of the fullerene. In ternary blends, a significant drop of the PCBM crystallinity is observed with increasing PCPDTBT content. Adding more than 20 wt% PCPDTBT to a P3HT:PCBM blend leads to a dramatic reduction of device efficiency, mainly due to short circuit current density and fill factor losses. This deterioration is attributed to the fact that addition of more than 20 wt% PCPDTBT to the host system strongly reduces crystallinity of the fullerene phase and electron transport in the ternary system.

Graphical abstract: Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices

Supplementary files

Article information

Article type
Paper
Submitted
26 Mar 2012
Accepted
13 Jun 2012
First published
14 Jun 2012

J. Mater. Chem., 2012,22, 15570-15577

Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices

F. Machui, S. Rathgeber, N. Li, T. Ameri and C. J. Brabec, J. Mater. Chem., 2012, 22, 15570 DOI: 10.1039/C2JM31882B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements