Issue 21, 2012

Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen

Abstract

One of the major challenges in the chemical reduction of graphene oxide is increasing the C/O atomic ratio of the chemically converted graphene. In this paper, we report a simple and effective method to reduce aqueous suspensions of graphene oxide using nascent hydrogen generated in situ by the reaction between Al foil and HCl, Al foil and NaOH and Zn powder and NaOH. The nascent hydrogen-reduced graphene oxides (nHRGOs) were characterized by elemental analysis, UV-vis spectra, Raman spectra, X-ray photoelectron spectroscopy, thermogravimetric analysis and electrical conductivity measurements. The reduction efficiency of graphene oxide strongly depended on the reaction medium and the rate of nascent hydrogen generation. The best nHRGO achieved a C/O atomic ratio greater than 21 and a bulk electrical conductivity as high as 12 500 S m−1, corresponding to the nascent hydrogen generated from the reaction between Al foil and HCl. Since nascent hydrogen could be produced on a metal surface upon oxidation in solution, other metals with low standard reduction potentials, such as Mg, Mn, and Fe, can be applied to reduce graphene oxide.

Graphical abstract: Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen

Supplementary files

Article information

Article type
Paper
Submitted
30 Jan 2012
Accepted
19 Mar 2012
First published
20 Mar 2012

J. Mater. Chem., 2012,22, 10530-10536

Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen

V. H. Pham, H. D. Pham, T. T. Dang, S. H. Hur, E. J. Kim, B. S. Kong, S. Kim and J. S. Chung, J. Mater. Chem., 2012, 22, 10530 DOI: 10.1039/C2JM30562C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements