Issue 5, 2012

A facile route to vertically aligned electrospun SnO2nanowires on a transparent conducting oxide substrate for dye-sensitized solar cells

Abstract

We demonstrate a large-scale production of aligned SnO2 nanofibers with a multi-nozzle electrospinning method combined with an air-shield enclosed rotating drum collector. The production rate by this multi-nozzle approach is several times higher than that of the single-nozzle electrospinning. The nanofibers produced were having a short range of diameters similar to the case of nanofibers produced by single nozzle electrospinning. The well-aligned nanofibers are subsequently processed into vertically oriented SnO2 nanowires on an FTO substrate. The average diameter and length of the wires were 75 ± 25 nm and 19 ± 2 μm, respectively. Dye-sensitized solar cells using this nanostructured material as the working electrode yielded a short-circuit current density (Jsc) of 9.9 mA cm−2 (which is 42% higher than that achieved by nanowires produced by other methods), an open-circuit voltage (Voc) of 0.525 V and a power conversion efficiency (η) of 2.53%. We believe that improvement of the multi-nozzle electrospinning is highly promising for commercialization due to simplicity and easiness of fabricating the spinneret, control over the diameter and spatial orientation of the fibers.

Graphical abstract: A facile route to vertically aligned electrospun SnO2 nanowires on a transparent conducting oxide substrate for dye-sensitized solar cells

Article information

Article type
Paper
Submitted
07 Oct 2011
Accepted
17 Nov 2011
First published
09 Dec 2011

J. Mater. Chem., 2012,22, 2166-2172

A facile route to vertically aligned electrospun SnO2 nanowires on a transparent conducting oxide substrate for dye-sensitized solar cells

T. Krishnamoorthy, M. Z. Tang, A. Verma, A. S. Nair, D. Pliszka, S. G. Mhaisalkar and S. Ramakrishna, J. Mater. Chem., 2012, 22, 2166 DOI: 10.1039/C1JM15047B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements