Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Bismuth telluride (Bi2Te3) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications at ambient temperature. However, its dimensionless figure-of-merit-ZT around 1 limits the large-scale industrial applications. Recent studies indicate that nanostructuring can enhance ZT while keeping the material form of bulk by employing an advanced synthetic process accompanied with novel consolidation techniques. Here, we report on bulk nanostructured (NS) undoped Bi2Te3 prepared via a promising chemical synthetic route. Spark plasma sintering has been employed for compaction and sintering of Bi2Te3 nanopowders, resulting in very high densification (>97%) while preserving the nanostructure. The average grain size of the final compacts was obtained as 90 ± 5 nm as calculated from electron micrographs. Evaluation of transport properties showed enhanced Seebeck coefficient (−120 μV K−1) and electrical conductivity compared to the literature state-of-the-art (30% enhanced power factor), especially in the low temperature range. An improved ZT for NS bulk undoped Bi2Te3 is achieved with a peak value of ∼1.1 at 340 K.

Graphical abstract: Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3)

Page: ^ Top