Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 3, 2012

Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters

Author affiliations

Abstract

Ethylcellulose has been recently shown to be an excellent organogelator for vegetable oils. The resulting gels maintain the fatty acid profile of the vegetable oil used, but posses a solid-like structure that can be useful for the replacement of saturated fats in food products. Texture profile analysis and the back extrusion technique were used to assess the mechanical properties of canola, soybean, and flaxseed oil oleogels consisting of 10% ethylcellulose and 90% vegetable oil. Oils with a higher degree of unsaturation were shown to produce harder gels. Oleogels containing ethylcellulose of three molecular weights and reduced polymer concentrations from 4–10% ethylcellulose were also tested using the back extrusion technique, resulting in an increase in gel strength as polymer concentration and molecular weight increased. Therefore, oleogel strength was shown to be dependant on polymer molecular weight, concentration, and the fatty acid composition of the vegetable oil. Scanning electron microscopy was also used to provide a greater understanding of the gel's microstructure. In addition, frankfurters were made using canola oil oleogels to assess the possibility for replacement of the more highly saturated animal fat in such a product. Cooked frankfurters made with oleogels showed no significant differences in chewiness or hardness compared to the control products made with beef fat. These results provide the first in-depth characterization of ethylcellulose oleogels, and could potentially aid in the design/manufacture of ethylcellulose oleogels with specific textural properties to replace saturated fat in a variety of food products.

Graphical abstract: Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters

Article information


Submitted
16 Sep 2011
Accepted
01 Feb 2012
First published
01 Mar 2012

Food Funct., 2012,3, 327-337
Article type
Paper

Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters

A. K. Zetzl, A. G. Marangoni and S. Barbut, Food Funct., 2012, 3, 327 DOI: 10.1039/C2FO10202A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements