Issue 10, 2012

Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water

Abstract

A new inorganic solid state electrocatalyst for the hydrogen evolution reaction (HER) is reported. Highly crystalline layered ternary sulfide copper-molybdenum-sulfide (Cu2MoS4) was prepared by a simple precipitation method from CuI and [MoS4]2− precursors. In aqueous solution and over a wide pH range (pH 0 to 7), this Cu2MoS4 showed very good catalytic activity for HER with an overvoltage requirement of only ca. 135 mV and an apparent exchange current density of 0.040 mA cm−2 (Tafel slope of ca. 95 mV per decade was found irrespective of the pH value). This Cu2MoS4 catalyst was found to be stable during electrocatalytic hydrogen generation. Therefore, it represents an attractive alternative to platinum.

Graphical abstract: Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water

Supplementary files

Article information

Article type
Communication
Submitted
21 Jun 2012
Accepted
07 Aug 2012
First published
08 Aug 2012

Energy Environ. Sci., 2012,5, 8912-8916

Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water

P. D. Tran, M. Nguyen, S. S. Pramana, A. Bhattacharjee, S. Y. Chiam, J. Fize, M. J. Field, V. Artero, L. H. Wong, J. Loo and J. Barber, Energy Environ. Sci., 2012, 5, 8912 DOI: 10.1039/C2EE22611A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements