Issue 9, 2012

Improvement in the efficiency of an OrganoMetallic Fuel Cell by tuning the molecular architecture of the anode electrocatalyst and the nature of the carbon support

Abstract

The electrooxidation of ethanol to acetate is achieved with Rh(I) diolefin amine complexes of the general formula [Rh(Y)(trop2NH)(L)] (L = PPh3, P(4-n-BuPh)3; Y = triflate, acetate; Bu = butyl) in direct alcohol fuel cells that have the peculiarity of containing a molecular anode electrocatalyst and, hence, are denoted as OrganoMetallic Fuel Cells (OMFCs). Changing the carbon black support from Vulcan XC-72 (Cv) to Ketjenblack EC 600JD (Ck) and/or the axial phosphane to produce non crystalline complexes has been found to remarkably change the electrochemical properties of the organorhodium catalysts, especially in terms of specific activity and durability. An in-depth study has shown that either Ck or P(4-n-butylPh)3 favour the formation of an amorphous Rh-acetato phase on the electrode, leading to a much more efficient and recyclable catalyst as compared to a crystalline Rh-acetate complex which is formed on Cv with PPh3 as the ligand. The ameliorating effect of the amorphous phase has been ascribed to its higher number of surface complex molecules as compared to the crystalline phase. A specific activity as high as 10 000 A gRh−1 has been found in a half cell, which is the highest value ever reported for ethanol electrooxidation.

Graphical abstract: Improvement in the efficiency of an OrganoMetallic Fuel Cell by tuning the molecular architecture of the anode electrocatalyst and the nature of the carbon support

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2012
Accepted
26 Jun 2012
First published
26 Jun 2012

Energy Environ. Sci., 2012,5, 8608-8620

Improvement in the efficiency of an OrganoMetallic Fuel Cell by tuning the molecular architecture of the anode electrocatalyst and the nature of the carbon support

M. Bevilacqua, C. Bianchini, A. Marchionni, J. Filippi, A. Lavacchi, H. Miller, W. Oberhauser, F. Vizza, G. Granozzi, L. Artiglia, S. P. Annen, F. Krumeich and H. Grützmacher, Energy Environ. Sci., 2012, 5, 8608 DOI: 10.1039/C2EE22055E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements