Jump to main content
Jump to site search

Issue 5, 2012
Previous Article Next Article

Sustainable desalination using a microbial capacitive desalination cell

Author affiliations


Microbial desalination cells (MDCs) use the electrical current generated by microbes to simultaneously treat wastewater, desalinate water, and produce bioenergy. However, current MDC systems transfer salts to the treated wastewater and affect wastewater's beneficial use. A microbial capacitive desalination cell (MCDC) was developed to address the salt migration and pH fluctuation problems facing current MDCs and improve the efficiency of capacitive deionization. The anode and cathode chambers of the MCDC were separated from the middle desalination chamber by two specially designed membrane assemblies, which consisted of cation exchange membranes and layers of activated carbon cloth (ACC). Taking advantage of the potential generated across the microbial anode and the air-cathode, the MCDC was capable of removing 72.7 mg total dissolved solids (TDS) per gram of ACC without using any external energy. The MCDC desalination efficiency was 7 to 25 times higher than traditional capacitive deionization processes. Compared to MDC systems, where the volume of concentrate can be substantial, all of the removed ions in the MCDC were adsorbed in the ACC assembly double layer capacitors without migrating to the anolyte or catholyte, and the electrically adsorbed ions could be recovered during assembly regeneration. The two cation exchange membrane based assemblies allowed the free transfer of protons across the system and thus prevented significant pH changes observed in traditional MDCs.

Graphical abstract: Sustainable desalination using a microbial capacitive desalination cell

Back to tab navigation

Supplementary files

Article information

15 Jan 2012
13 Mar 2012
First published
13 Mar 2012

Energy Environ. Sci., 2012,5, 7161-7167
Article type

Sustainable desalination using a microbial capacitive desalination cell

C. Forrestal, P. Xu and Z. Ren, Energy Environ. Sci., 2012, 5, 7161
DOI: 10.1039/C2EE21121A

Social activity

Search articles by author