Issue 3, 2012

Nanobelt–carbon nanotube cross-junction solar cells

Abstract

Nanostructures such as carbon nanotubes (CNTs) and semiconducting nanowires are promising candidates for developing next-generation photovoltaics. Here, we report solar cells using individual single-walled or double-walled CNTs and CdSe nanobelts arranged in simple cross-junction configurations. The CNT and CdSe nanobelts form reliable line contacts at their intersections, resulting in efficient heterojunction solar cells with power conversion efficiencies up to 1.87% and stable performance in air over long periods. Both semiconducting and metallic CNTs can form solar cells with CdSe nanobelts, with similar open-circuit voltages but different short-circuit current densities. We can integrate multiple CNTs in parallel with a single nanobelt to construct an array of cross-junction solar cells simultaneously, with scaled current output, indicating the possibility of parallel device connection and large-scale production. Our results show the potential of utilizing one-dimensional nanostructures to design and fabricate high performance photovoltaic devices with well-defined and scalable structures.

Graphical abstract: Nanobelt–carbon nanotube cross-junction solar cells

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2011
Accepted
17 Jan 2012
First published
18 Jan 2012

Energy Environ. Sci., 2012,5, 6119-6125

Nanobelt–carbon nanotube cross-junction solar cells

E. Shi, J. Nie, X. Qin, Z. Li, L. Zhang, Z. Li, P. Li, Y. Jia, C. Ji, J. Wei, K. Wang, H. Zhu, D. Wu, Y. Li, Y. Fang, W. Qian, F. Wei and A. Cao, Energy Environ. Sci., 2012, 5, 6119 DOI: 10.1039/C2EE03409C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements