Issue 43, 2012

Strong metal–metal coupling in mixed-valent intermediates [Cl(L)Ru(μ-tppz)Ru(L)Cl]+, L = β-diketonato ligands, tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine

Abstract

Five diruthenium(II) complexes [Cl(L)Ru(μ-tppz)Ru(L)Cl] (1–5) containing differently substituted β-diketonato derivatives (1: L = 2,4-pentanedionato; 2: L = 3,5-heptanedionato; 3: L = 2,2,6,6-tetramethyl-3,5-heptanedionato; 4: L = 3-methyl-2,4-pentanedionato; 5: L = 3-ethyl-2,4-pentanedionato) as ancillary ligands (L) were synthesized and studied by spectroelectrochemistry (UV-Vis-NIR, electron paramagnetic resonance (EPR)). X-ray structural characterisation revealed anti (1, 2, 5) or syn (3) configuration as well as non-planarity of the bis-tridentate tppz bridge and strong dπ(RuII) → π*(pyrazine, tppz) back-bonding. The widely separated one-electron oxidation steps, RuIIRuII/RuIIRuIII and RuIIRuIII/RuIIIRuIII, result in large comproportionation constants (Kc) of ≥1010 for the mixed-valent intermediates. The syn-configurated 3n exhibits a particularly high Kc of 1012 for n = 1+, accompanied by density functional theory (DFT)-calculated minimum Ru–N bond lengths for this RuIIRuIII intermediate. The electrogenerated mixed-valent states 1+5+ exhibit anisotropic EPR spectra at 110 K with average values <g> of 2.304–2.234 and g anisotropies Δg = g1g3 of 0.82–0.99. Metal-to-metal charge transfer (MMCT) absorptions occur for 1+5+ in the NIR region at 1660 nm–1750 nm (ε ≈ 2700 dm3 mol−1 cm−1, Δν1/2 ≈ 1800 cm−1). DFT calculations of 1+ and 3+ yield comparable Mulliken spin densities of about 0.60 for the metal ions, corresponding to valence-delocalised situations (Ru2.5)2. Rather large spin densities of about −0.4 were calculated for the tppz bridges in 1+ and 3+. The calculated electronic interaction values (VAB) for 1+5+ are about 3000 cm−1, comparable to that for the Creutz–Taube ion at 3185 cm−1. The DFT calculations predict that the RuIIIRuIII forms in 12+52+ prefer a triplet (S = 1) ground state with ΔE (S = 0 − S = 1) ∼5000 cm−1. One-electron reduction takes place at the tppz bridge which results in species [Cl(L)RuII(μ-tppz˙)RuII(L)Cl] (1˙3˙, 5˙) which exhibit free radical-type EPR signals and NIR transitions typical of the tppz radical anion. The system 4n is distinguished by lability of the Ru–Cl bonds.

Graphical abstract: Strong metal–metal coupling in mixed-valent intermediates [Cl(L)Ru(μ-tppz)Ru(L)Cl]+, L = β-diketonato ligands, tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2012
Accepted
31 Aug 2012
First published
03 Sep 2012

Dalton Trans., 2012,41, 13429-13440

Strong metal–metal coupling in mixed-valent intermediates [Cl(L)Ru(μ-tppz)Ru(L)Cl]+, L = β-diketonato ligands, tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine

T. Kundu, D. Schweinfurth, B. Sarkar, T. K. Mondal, J. Fiedler, S. M. Mobin, V. G. Puranik, W. Kaim and G. K. Lahiri, Dalton Trans., 2012, 41, 13429 DOI: 10.1039/C2DT31763J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements