Issue 42, 2012

The role of bridging ligand in hydrogen generation by photocatalytic Ru/Pd assemblies

Abstract

The synthesis and characterisation of two terpyridine based ruthenium/palladium heteronuclear compounds are presented. The photocatalytic behaviour of the Ru/Pd complex containing the linear 2,2′:5′,2′′-terpyridine bridge (1a) and its analogue the non-linear 2,2′:6′,2′′-terpyridine bridge (2a) are compared together with the respective mononuclear complexes 1 and 2. Irradiation of 1a with visible light (e.g., 470 nm) results in the photocatalytic generation of dihydrogen gas. Photocatalysis was not observed with complex 2a by contrast. A comparison with the photocatalytic behaviour of the precursors 1 and 2 indicates, that while for 1a the photocatalysis is an intramolecular process, for the mononuclear precursors it is intermolecular. The photophysical and electrochemical properties of the mono- and heterobinuclear compounds are compared. Raman spectroscopy and DFT calculations indicate that there are substantial differences in the nature of the lowest energy 3MLCT states of 1a and 2a, from which the contrasting photocatalytic activities of the complexes can be understood.

Graphical abstract: The role of bridging ligand in hydrogen generation by photocatalytic Ru/Pd assemblies

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2012
Accepted
15 Jun 2012
First published
18 Jun 2012

Dalton Trans., 2012,41, 13050-13059

The role of bridging ligand in hydrogen generation by photocatalytic Ru/Pd assemblies

G. Singh Bindra, M. Schulz, A. Paul, R. Groarke, S. Soman, J. L. Inglis, W. R. Browne, M. G. Pfeffer, S. Rau, B. J. MacLean, M. T. Pryce and J. G. Vos, Dalton Trans., 2012, 41, 13050 DOI: 10.1039/C2DT30948C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements