Issue 8, 2012

Stereoselective synthesis of bulky 1,2-diols with alcohol dehydrogenases

Abstract

Although biotransformations implementing alcohol dehydrogenases (ADHs) are widespread, enzymes which catalyse the reduction and oxidation of sterically demanding substrates, especially 2-hydroxy ketones, are still rare. To fill this gap eight ADHs were investigated concerning their potential to reduce bulky 2-hydroxy ketones. All of these enzymes showed good activities along with excellent enantio- (ee > 99%) and diastereoselectivities (de > 99%). Due to their differences in substrate preferences and stereoselectivity a broad range of diastereomerically pure 1,2-diols is now accessible via biotransformation. Best results were obtained using the alcohol dehydrogenase from Ralstonia sp. (Cupriavidus sp.) (RADH), which showed a broad substrate range, especially for sterically demanding compounds. Araliphatic 2-hydroxy ketones, like (R)-2-hydroxy-1-phenylpropan-1-one ((R)-2-HPP), were reduced much faster than aliphatic or aromatic aldehydes (e.g. benzaldehyde) under the applied conditions. Additionally (R)- as well as (S)-2-hydroxy ketones were converted with high diastereoselectivities (de > 99%). RADH, which was up to now only studied as a whole cell biocatalyst overexpressed in E. coli, was purified and thoroughly characterised concerning its catalytic properties.

Graphical abstract: Stereoselective synthesis of bulky 1,2-diols with alcohol dehydrogenases

  • This article is part of the themed collection: Biocatalysis

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2012
Accepted
26 Mar 2012
First published
27 Mar 2012

Catal. Sci. Technol., 2012,2, 1580-1589

Stereoselective synthesis of bulky 1,2-diols with alcohol dehydrogenases

J. Kulig, R. C. Simon, C. A. Rose, S. M. Husain, M. Häckh, S. Lüdeke, K. Zeitler, W. Kroutil, M. Pohl and D. Rother, Catal. Sci. Technol., 2012, 2, 1580 DOI: 10.1039/C2CY20120H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements