Issue 15, 2012

New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics

Abstract

Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel–Fulcher–Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer.

Graphical abstract: New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics

Article information

Article type
Discussion
Submitted
07 Dec 2011
Accepted
03 Feb 2012
First published
08 Mar 2012

Phys. Chem. Chem. Phys., 2012,14, 5090-5099

New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics

M. Drüschler, N. Borisenko, J. Wallauer, C. Winter, B. Huber, F. Endres and B. Roling, Phys. Chem. Chem. Phys., 2012, 14, 5090 DOI: 10.1039/C2CP40288B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements