Issue 11, 2012

3D-RISM-KH molecular theory of solvation and density functional theory investigation of the role of water in the aggregation of model asphaltenes

Abstract

We applied a multiscale modeling approach that involves the statistical–mechanical three-dimensional reference interaction site model with the Kovalenko–Hirata closure approximation (3D-RISM-KH molecular theory of solvation) as well as density functional theory (DFT) of electronic structure to study the role of water in aggregation of the asphaltene model compound 4,4′-bis(2-pyren-1-yl-ethyl)-2,2′-bipyridine (PBP) [X. Tan, H. Fenniri and M. R. Gray, Energy Fuels, 2008, 22, 715]. The solvation free energy and potential of mean force predicted by 3D-RISM-KH reveal favorable pathways for disaggregation of PBP dimers in pure versuswater-saturated chloroform solvent. The water density distribution functions elucidate hydrogen bonding preferences and water bridge formation between PBP monomers. The ΔG298 values of −5 to −7 kcal mol−1 for transfer of water molecules in chloroform to a state interacting with PBP molecules are in agreement with experimental results. Geometry optimization and thermochemistry analysis of PBP dimers with and without water bridges using WB97Xd/6-31G(d,p) predict that both PBP dimerization and dimer stabilization by water bridges are spontaneous (ΔG298 < 0). The 1H NMR chemical shifts of PBP monomers and dimers predicted using the gauge-independent atomic orbital method and polarizable continuum model for solvation in chloroform are in an excellent agreement with the experimental results for dilute and concentrated PBP solutions in chloroform, respectively [X. Tan, H. Fenniri and M. R. Gray, Energy Fuels, 2009, 23, 3687]. The DFT calculations of PBP dimers with explicit water show that bridges containing 1–3 water molecules lead to stabilization of PBP dimers. Additional water molecules form hydrogen bonds with these bridges and de-shield the PBP protons, negating the effect of water on the 1HC3 NMR chemical shift of PBP, in agreement with experiment. The ΔG298 results show that hydrogen bonding to water and water-promoted polynuclear assembly bridging is as important as π–π interactions for asphaltene aggregation.

Graphical abstract: 3D-RISM-KH molecular theory of solvation and density functional theory investigation of the role of water in the aggregation of model asphaltenes

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2011
Accepted
08 Dec 2011
First published
09 Dec 2011

Phys. Chem. Chem. Phys., 2012,14, 3922-3934

3D-RISM-KH molecular theory of solvation and density functional theory investigation of the role of water in the aggregation of model asphaltenes

L. M. da Costa, S. Hayaki, S. R. Stoyanov, S. Gusarov, X. Tan, M. R. Gray, J. M. Stryker, R. Tykwinski, J. W. D. M. Carneiro, H. Sato, P. R. Seidl and A. Kovalenko, Phys. Chem. Chem. Phys., 2012, 14, 3922 DOI: 10.1039/C2CP23131J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements