An innovative computational comparison of exact and centrifugal sudden quantum properties of the N + N2 reaction
Abstract
The development of an innovative computational strategy suited to provide an accurate quantum evaluation of the detailed properties of the N + N2 exchange reaction has been undertaken by carrying out an extended theoretical study of such reaction. To this end exact and approximate quantum calculations (based on both time-independent and time-dependent techniques) of state-specific and state-to-state probabilities of the title reaction have been performed by considering values of the total angular momentum quantum number up to 20, values of total energy up to 2.3 eV and by making a combined use of both high throughput and high performance computing platforms. The comparison of the results obtained from calculations performed by taking into account the full Coriolis coupling of the allowed helicity states with those obtained when neglecting the Coriolis coupling or even a model energy shift treatment has allowed us to find out when a workflow managing the distribution of the jobs can replace exact treatments with approximate ones and for what type of properties this is possible.