Issue 11, 2012

Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes

Abstract

Electrochemical microelectrodes are commonly used to record amperometric spikes of current that result from oxidation of transmitter released from individual vesicles during exocytosis. Whereas the exquisite sensitivity of these measurements is well appreciated, a better understanding of the noise sources that limit the resolution of the technique is needed to guide the design of next-generation devices. We measured the current power spectral density (SI) of electrochemical microelectrodes to understand the physical basis of dominant noise sources and to determine how noise varies with the electrode material and geometry. We find that the current noise is thermal in origin in that SI is proportional to the real part of the admittance of the electrode. The admittance of microelectrodes is well described by a constant phase element model such that both the real and imaginary admittance increase with frequency raised to a power of 0.84–0.96. Our results demonstrate that the current standard deviation is proportional to the square root of the area of the working electrode, increases ∼linearly with the bandwidth of the recording, and varies with the choice of the electrode material with Au ≈ carbon fiber > nitrogen-doped diamond-like carbon > indium-tin-oxide. Contact between a cell and a microelectrode does not appreciably increase noise. Surface-patterned microchip electrodes can have a noise performance that is superior to that of carbon-fiber microelectrodes of the same area.

Graphical abstract: Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2012
Accepted
11 Apr 2012
First published
13 Apr 2012

Analyst, 2012,137, 2674-2681

Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes

J. Yao and K. D. Gillis, Analyst, 2012, 137, 2674 DOI: 10.1039/C2AN35157A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements