Jump to main content
Jump to site search

Issue 44, 2012
Previous Article Next Article

Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation

Author affiliations

Abstract

We study the mechanical relaxation behavior of human red blood cells by observing the time evolution of shape change of cells flowing through microchannels with abrupt constrictions. We observe two types of relaxation processes. In the first fast process (τ1 ∼ 200 ms) the initially parachute shaped cells relax into cup-shaped cells (stomatocytes). These cells relax and reorient in a second relaxation process with a response time of τ1/2 ∼ 10 s into the equilibrium discoid shapes. The values for the relaxation times of single red blood cells in the population scatter significantly within the cell population between 0.11 s < τ1 < 0.52 s and 9 s < τ1/2 < 49 s, respectively. However, when plotting τ1/2 against τ1, we find a linear relationship between the two timescales and are able to relate both to the elastic properties of the spectrin cytoskeleton underlying the red cell's plasma membrane. Adenosine Triphosphate (ATP) enhances dissociation of spectrin filaments resulting in a reduced shear modulus. We modify the cytoskeleton connectivity by depletion and repletion of ATP and study the effect on relaxation. Both the linear relationship of timescales as well as the ATP dependence can be understood by theoretical models.

Graphical abstract: Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation

Back to tab navigation

Article information


Submitted
29 Jun 2012
Accepted
17 Aug 2012
First published
12 Sep 2012

Soft Matter, 2012,8, 11240-11248
Article type
Paper

Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation

S. Braunmüller, L. Schmid, E. Sackmann and T. Franke, Soft Matter, 2012, 8, 11240
DOI: 10.1039/C2SM26513C

Social activity

Search articles by author

Spotlight

Advertisements