Jump to main content
Jump to site search

Issue 31, 2012
Previous Article Next Article

Enhanced visible-light photocatalytic H2-production performance of multi-armed CdS nanorods

Author affiliations

Abstract

Visible light photocatalytic H2 production from aqueous solutions using solar light is of great importance from the viewpoint of solar energy conversion and storage and environment protection. In this study, a novel visible-light-driven photocatalyst, multi-armed CdS nanorods, was synthesized using a solvothermal method with dodecylamine as solvent. The prepared CdS nanorod samples showed especially high and stable photocatalytic H2-production activity with aqueous lactic acid solution as sacrificial reagent and Pt as co-catalyst under visible light irradiation. The CdS nanorod sample prepared at 140 °C for 12 h exhibited a high H2-production rate of 1.21 mmol h−1 (about 3.2 times higher than that of CdS nanoparticles (NPs) formed in water) with a very small amount of Pt (0.23 wt%) and a quantum efficiency (QE) of 51% at a wavelength of 420 nm. This high photocatalytic H2-production activity can be attributed to the synergistic effects of several factors such as the hexagonal phase structure, high surface area, great pore volume and good crystallization. Furthermore, the prepared CdS nanorod sample was photostable and no photocorrosion was observed after photocatalytic recycling. Our work demonstrated that multi-armed CdS nanorods were a promising candidate for the development of high-performance visible-light photocatalysts in photocatalytic H2 production and that the morphology of the CdS nanocrystals had a great effect on the photocatalytic H2-production activity.

Graphical abstract: Enhanced visible-light photocatalytic H2-production performance of multi-armed CdS nanorods

Back to tab navigation

Article information


Submitted
03 Sep 2012
Accepted
02 Oct 2012
First published
02 Oct 2012

RSC Adv., 2012,2, 11829-11835
Article type
Paper

Enhanced visible-light photocatalytic H2-production performance of multi-armed CdS nanorods

J. Yu, Y. Yu and B. Cheng, RSC Adv., 2012, 2, 11829
DOI: 10.1039/C2RA22019A

Social activity

Search articles by author

Spotlight

Advertisements